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By R E N É P I N E T1† AND E. G. P A V Í A2
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The stability of one-layer vortices with inhomogeneous horizontal density distributions
is examined both analitically and numerically. Attention is focused on elliptical
vortices for which the formal stability theorem proved by Ochoa, Sheinbaum & Pavı́a
(1988) does not apply. Our method closely follows that of Ripa (1987) developed for
the homogeneous case; and indeed they yield the same results when inhomogenities
vanish. It is shown that a criterion from the formal analysis – the necessity of a radial
increase in density for instability – does not extend to elliptical vortices. In addition, a
detailed examination of the evolution of the inhomogeneous density fields, provided
by numerical simulations, shows that homogenization, axisymmetrization and loss of
mass to the surroundings are the main effects of instability.

1. Introduction
In a recent paper Ochoa, Sheinbaum & Pavı́a (1988), using a one-layer reduced-

gravity model with variable density, established a procedure to generate families of
solutions with the same flow structure as any non-divergent solution of the classical
homogeneous vortex model. These so-called inhomogeneous rodons were constructed
as explicit examples of exact solutions on the f-plane, and their formal stability
(Holm et al. 1985) was studied. A theorem, valid for circular vortices, showed that in
order to be unstable the density of the inhomogeneous rodon must increase outward
somewhere. Furthermore, some numerical simulations performed by the same authors
(Ochoa et al. 1998) suggested that this formal stability theorem might be applicable
to non-circular inhomogeneous rodons as well. In this work we rework the analytical
study of the stability of elliptical inhomogeneous rodons in a normal modes fashion,
since the formal stability method is prohibited for this non-circular case. Moreover,
we complement the stability study with numerical simulations to illustrate the details
of the vortex evolution.

We begin by briefly presenting the model first proposed by Schopf & Cane (1983)
which includes, in an approximate manner, the effects of density inhomogeneity. For
just one active layer the model is better cast, as shown by Ripa (1996), in terms of the
fields γ = θ1/2 and φ = θ1/2h, where θ(r, t) = g(ρ̄−ρ(r, t))/ρ̄ is the buoyancy (which is
required to be non-negative definite), g is gravity, ρ is the (space- and time-dependent)
mass density of the active layer, ρ̄ is the uniform mass density of the inert lower layer,
h = h(r, t) is the thickness of the active layer, r is the horizontal vector position, and

† Present address: Facultad de Ciencias Marinas, UABC. Unidad Universitaria Ensenada, Baja
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t is time. The equations are

∂φ

∂t
+ ∇ · (φu) = 0, (1.1a)

∂u

∂t
+ u · ∇u+ fk̂ × u+ γ∇φ = 0, (1.1b)

∂γ

∂t
+ u · ∇γ = 0, (1.1c)

where u is the horizontal velocity and f is the Coriolis parameter; k̂ is the unit vertical
(in the opposite direction to gravity) vector.

2. Base solutions
Ripa (1996) and Ochoa et al. (1998) have proposed ways to obtain base solutions

for the inhomogeneous system (1.1), from solutions to the homogeneous problem

Dĥ

Dt
+ ĥ∇ · u = 0, (2.1a)

Du

Dt
+ f k̂ × u+ ĝ∇ĥ = 0, (2.1b)

where ĝ is the (constant) reduced gravity. It is convenient to distinguish between the

active layer depth for the homogeneous problem (ĥ) and that for the inhomogeneous
problem (h).

If, for a solution to (2.1a)

Dĥ

Dt
= 0,

i.e. the velocity field is non-divergent, then γ and φ can be represented as depending

on ĥ only, satisfying

γ(ĥ) dφ = ĝ dĥ, (2.2)

since

Dγ

Dt
=

dγ

dĥ

dĥ

dt
,

Dφ

Dt
=

dφ

dĥ

dĥ

dt
.

Systems (1.1) and (2.1) have, then, the same velocity field u as a solution. Of course,
the active layer depth of the inhomogeneous rodon is

h(ĥ) =
φ(ĥ)

γ(ĥ)
, (2.3)

and the role of ĥ has been reduced to that of an internal variable used to describe
the radial distribution of properties.

Now, for elliptical vortices, Ripa (1987) found it useful to introduce the f∗-plane

(x∗ + iy∗) = (x+ iy)eiΩt, (2.4)

and f∗ = f − 2Ω, where Ω is the rotation rate of the frontal ellipse or the ‘vortex
precession’, and

Ω∗ = [Ω(f − Ω)]1/2. (2.5)
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The function u∗ = (u∗, v∗) can be defined for r∗ = (x∗, y∗):

u∗(r∗, t) = (u∗, v∗) = u(r, t) ◦ r(r∗).
From this point on all work will be carried out in the f∗-plane, and scalar fields

ĥ, φ, ψ will be appropriately redefined as†
ĥ(r∗, t)
φ(r∗, t)
ψ(r∗, t)

 :=


ĥ(r, t)

φ(r, t)

ψ(r, t)

 ◦ r(r∗, t),
or even, as it has been done in (2.3),

φ(ĥ, t)

ψ(ĥ, t)

}
:=

φ(r, t)

ψ(r, t)

}
◦ r(r∗, t) ◦ r∗(ĥ).

Equations (2.1) in the f∗-plane are

Dĥ

Dt
+ ĥ∇ · u∗ = 0,

Du∗
Dt

+ f∗ k̂ × u∗ + ĝ∇ĥ+ Ω2
∗r∗ = 0,

and system (1.1) becomes

∂φ

∂t
+ ∇ · (φu∗) = 0, (2.6a)

∂u∗
∂t

+ u∗ · ∇u∗ + f∗k̂ × u∗ + γ∇φ+ Ω2
∗r∗ = 0, (2.6b)

∂γ

∂t
+ u∗ · ∇γ = 0. (2.6c)

If a and b are the ellipse’s semi-axes, then

ĥ(r∗, t) =
a b

2 ĝ
Ω∗ f∗

(
1−

(
x∗
a

)2

−
(
y∗
b

)2)
; (2.7)

its value at the vortex centre is denoted as ĥm = ĥ|x∗=0,y∗=0.

From (2.3), we can choose an arbitrary density distribution function φ0(ĥ), and

obtain γ0(ĥ):

γ0(ĥ) =
ĝ

dφ0/dĥ
, (2.8)

using, as in Ochoa et al. (1998),

φ0(ĥ) = ĥĝ1/2

(
1 +

µ

2

ĥ

ĥm

)
, (2.9)

where µ is a parameter which controls the inhomogeneity.
This implies

γ0(ĥ) =
ĝ1/2

1 + µĥ/ĥm
, (2.10)

† Extended notation is used for composition of functions f ◦ g(x), defined as f(g(x)).
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and an active layer depth profile

h(ĥ) = ĥ(1 + µĥ/ĥm)

(
1 +

µ

2
ĥ/ĥm

)
. (2.11)

3. Method
A non-divergent solution for the homogeneous case has the same flow structure

in the homogeneous and inhomogeneous cases, as has been described in § 2. For the
inhomogeneous case, therefore, a non-divergent inhomogeneous rodon is set as
the basic solution. The two horizontal components of velocity are the same as in
the homogeneous case:

u0 = (aΩ∗y∗)/b, v0 = −(bΩ∗x∗)/a. (3.1)

The depth and density fields, represented through variables φ := ĥ θ1/2(ĥ) and

ψ := 1/γ(ĥ) = θ−1/2(ĥ), will be taken from the inhomogeneous rodon solution as
obtained by Ochoa et al. (1998):

φ0(ĥ) = ĥ

(
1 +

µ

2

ĥ

ĥm

)
ĝ1/2, (3.2)

ψ0(ĥ) =

(
1 + µ

ĥ

ĥm

)
ĝ−1/2, (3.3)

where ĥ (the layer thickness) and ĝ (the reduced gravity) have lost, in the inho-
mogeneous case, their physical meaning; they remain only as parameters for ra-
dial position and horizontal density distribution, respectively. Constant parameter

ĥm = abΩ∗f∗/(2ĝ) is the maximum value of ĥ(r∗) at the initial time. Note that the
layer thickness in the inhomogeneous case h = φ/γ coincides with or is directly

proportional to ĥ only when γ is uniform.
For elliptical vortices, our stability analysis follows closely that of Ripa (1987) for

homogeneous rodons. While Ripa (1987) and Ochoa et al. (1998) are able to do
formal stability analysis on circular rodons, we are restricted to normal mode stability
analysis. Andrews (1984) has shown that all solutions to the stability condition
obtained from conservation integrals must have the same symmetries as the system
does. Of course, there may well be (see examples in Ripa 1992) stable non-symmetrical
solutions, but they cannot be found by means of formal analysis.

We now write the dependent variables as a basic state and a perturbation:

u∗ = u0 +U e−iωtε+ O(ε2), (3.4)

v∗ = v0 + V e−iωtε+ O(ε2), (3.5)

φ = φ0 + Φ e−iωtε+ O(ε2), (3.6)

ψ = ψ0 +Ψ e−iωtε+ O(ε2), (3.7)

where U,V ,Φ,Ψ depend on (x∗, y∗). As perturbations are proportional to e−iωt, the
linear instability criterion is

Im (ω) > 0.
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When substituting into (2.6) we have, to O(ε), four equations for variables
(U,V ,Φ,Ψ ):

−iabUωM = −a3b3 ∂Φ

∂x∗
ĝ1/2 − a2VΩ∗M + abVf∗M

−a2b4Ω∗f∗ĝ1/2Ψx∗ + b2Ω∗
∂U

∂y∗
Mx∗ − a2Ω∗

∂U

∂x∗
My∗, (3.8a)

−iabVωM = −a3b3 ∂Ψ

∂y∗
ĝ1/2 + b2UΩ∗M − abUf∗M

+b2Ω∗
∂V

∂y∗
Mx∗ − a4b2Ω∗f∗ĝ1/2Ψy∗ − a2Ω∗

∂V

∂x∗
My∗, (3.8b)

−4ia3b3ĝ1/2ωΦ = −a4b4Ω∗
∂U

∂x∗
f∗ − a4b4Ω∗

∂V

∂y∗
f∗ − a2b2Ω∗

∂U

∂x∗
f∗M

−a2b2Ω∗
∂V

∂y∗
f∗M + 4a2b4Ω∗

∂Ψ

∂y∗
ĝ1/2x∗ + 4b2UΩ∗f∗Mx∗

+a2b4Ω∗
∂U

∂x∗
f∗x2

∗ + a2b4Ω∗
∂V

∂y∗
f∗x2

∗ + b2Ω∗
∂U

∂x∗
f∗Mx2

∗

+b2Ω∗
∂V

∂y∗
f∗Mx2

∗ − 4a4b2Ω∗
∂Φ

∂x∗
ĝ1/2y∗ + 4a2VΩ∗f∗My∗

+a4b2Ω∗
∂U

∂x∗
f∗y2

∗ + a4b2Ω∗
∂V

∂y∗
f∗y2

∗ + a2Ω∗
∂U

∂x∗
f∗My2

∗

+a2Ω∗
∂V

∂y∗
f∗My2

∗ , (3.8c)

−ia2b2ĝ1/2Ψω = ab3Ω∗
∂Ψ

∂y∗
ĝ1/2x∗ − a3bΩ∗

∂Ψ

∂x∗
ĝ1/2y∗

−2b2U(a2b2 −M)x∗
a2b2 − b2x2∗ − a2y2∗

− 2a2V (a2b2 −M)y∗
a2b2 − b2x2∗ − a2y2∗

, (3.8d)

where M = (a2b2 + µ(a2b2 − b2x2∗ − a2y2∗)).
We then apply a set of transformations (cf. Ripa 1987) in order to write the

solutions to the system as a polynomial series in the independent variables

z = x∗/a+ iy∗/b, zc = x∗/a− iy∗/b, (3.9)

where the subscript c denotes complex conjugate. The variables U,V ,Φ,Ψ are repre-
sented by A,B, C, D by means of

U = ia(A+ B), V = b(A− B), (3.10a)

Φ =
abf∗C
ĝ1/2

, Ψ =
D

Ω∗ĝ1/2
. (3.10b)

Finally, the system is turned around to separate variables A and B. If S1 and S2 are
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the left-hand parts of (3.8a) and (3.8b), respectively, equations

bS1 + iaS2 = 0, (3.11a)

ibS1 + aS2 = 0, (3.11b)

will replace them in the system.
If S3 and S4 now represent the left-hand parts, respectively, of (3.8c) and (3.8d), a

new system will result comprising (3.11a, b) and the two following equations:

S3 = 0, (3.11c)

S4 = 0. (3.11d)

In the new variables, we have

A+
∂A

∂z
z − ∂A

∂zc
zc + µ

(
−A− ∂A

∂z
z +

∂A

∂zc
zc

)
(−1 + z zc)

+
Aω

Ω∗
(1 + µ− µz zc) +

α

2

(
−2A+ 2

∂C

∂zc
− 2Aµ+ Dz + 2Aµz zc

)
+
δ

2

(
2B + 2

∂C

∂z
+ 2Bµ+ Dzc − 2Bµz zc

)
= 0, (3.12)

−B +
∂B

∂z
z − ∂B

∂zc
zc + µ

(
B − ∂B

∂z
z +

∂B

∂zc
zc

)
(−1 + z zc)

+
Bω

Ω∗
(1 + µ− µz zc) +

δ

2

(
−2A+ 2

∂C

∂zc
− 2Aµ+ Dz + 2Aµz zc

)
+
α

2

(
2B + 2

∂C

∂z
+ 2Bµ+ Dzc − 2Bµz zc

)
= 0, (3.13)

−2
∂A

∂z
− 2

∂B

∂zc
+ 2C

ω

Ω∗
+ 2Bz + 2

∂C

∂z
z + 2Azc − 2

∂C

∂zc
zc + 2

∂A

∂z
z zc + 2

∂B

∂zc
z zc

+µ (−1 + z zc)

(
∂A

∂z
+
∂B

∂zc
− 2Bz − 2Azc − ∂A

∂z
z zc − ∂B

∂zc
z zc

)
= 0, (3.14)

D
ω

Ω∗
+
∂D

∂z
z − ∂D

∂zc
zc + 2µ (Bz + Azc) = 0. (3.15)

We now write the functions A,B, C, D as polynomials in z, zc:

A =

n−1∑
m=0

m∑
s=0

Amsz
m−szsc, (3.16a)

B =

n−1∑
m=0

m∑
s=0

Bmsz
m−szsc, (3.16b)

C =

n∑
m=0

m∑
s=0

Cmsz
m−szsc, (3.16c)

D =

n−2∑
m=0

m∑
s=0

Dmsz
m−szsc. (3.16d)



Stability of elliptical horizontally inhomogeneous rodons 35

As in Ripa (1987), n is called the polynomial degree of system (3.16), with the limits
indicated by the defining equations. Each power-combination term of z zc is linearly
independent of the rest. Thus we obtain an equation set for every polynomial degree.

4. Results
4.1. Polynomial degree-1 set

The simplest non-trivial system obtained from (3.16), namely for n = 1, is used to
calculate C0 0, B0 0, A0 0, C1 0 and C1 1. The system matrix is

0 0 0 0 0

0 1− α δ −α/(1 + µ) −δ/(1 + µ)

0 −δ −1 + α −δ/(1 + µ) −α/(1 + µ)

0 −1− µ 0 −1 0

0 0 −1− µ 0 1

 , (4.1)

where

α =
f∗

2Ω∗

(
b

a
+
a

b

)
, (4.2)

δ =
f∗

2Ω∗

(
b

a
− a

b

)
. (4.3)

Its characteristic polynomial,

−ω + (2 + α2 − δ2)ω3 − ω5 = 0,

is simple enough to have its non-zero roots expressed analytically:

ω = ±( 1
2
)1/2
(
2 + α2 − δ2 ± (4α2 + α4 − 4δ2 − 2α2δ2 + δ4)1/2

)1/2
. (4.4)

The parameter µ is not yet present in the eigenvalue calculations, but it will appear
in higher-degree polynomials (Pinet 1998). For n = 1 all eigenvalues are real: there
are no unstable components.

4.2. Polynomial degrees 2–5

The degree-2 characteristic polynomial is considerably more complicated:

(−16 − 4α3 − α4 + 8δ2 − δ4 + α2(−8 + 2δ2) + α(−16 + 4δ2))ω5

+ (40 + 4α5 + α6 − 34δ2 + 10δ4 − δ6 + α3(24− 8δ2) + α4(10− 3δ2)

+ α2(34− 20δ2 + 3δ4) + α(36− 24δ2 + 4δ4))ω7

+ (−33− 8α3 − 3α4 + 20δ2 − 3δ4 + α2(−20 + 6δ2) + α(−24 + 8δ2))ω9

+ (10 + 4α+ 3α2 − 3δ2)ω11 − ω13 = 0. (4.5)

It also has eigenvalues with null imaginary parts for the ranges considered (0 6 a/b 6
1, 0 6 Ω/f 6 0.5). Non-zero eigenvalues for the polynomial degree-2 system are

±(4 + α2 − δ2)1/2,

±(4 + 4α+ α2 − δ2)1/2,

± 1√
2

(
2 + α2 − δ2 ± (4α2 + α4 − 4δ2 − 2α2δ2 + δ4)1/2

)1/2
.
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Figure 1. Effect of density inhomogeneity on the stability of an elliptical rodon. (a) The stability
diagram for polynomial degree-5 perturbations to a base rodon with µ = 0; (b) is for µ = −0.04.
Contours are for perturbation growth (Im(ω)) in Ω∗ units: in (a) they are 0.0 and 1.0; and in (b),
0.0 to 1.0 in 0.1 intervals.
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µ

σ/f

–0.2

0.4

0.2

0

–0.4

0.1 0.2 0.3 0.4

(b)

σ/f

–0.2

0.4

0.2

0

–0.4

0.1 0.2 0.3 0.4

(c)

µ

σ/f

–0.2

Figure 2. Contours 0.0–1.0 of growth rate for a polynomial degree-5 perturbation to an inhomoge-
neous elliptical vortex (a/b = 0.4). There are unstable solutions even for µ > 0. Contour increment
is 0.05Ω∗. (b, c) As (a) but for degree 4 and 3 respectively.

As in the homogeneous case, eigenvalues for polynomial degrees 0, 1 and 2 of the
inhomogeneous problem are all real. However, at polynomial degrees 3, 4 and 5 there
are zones in the stability diagrams that indicate imaginary parts greater than zero for
the eigenvalues.
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Im (ω)

µ
0–0.1–0.2–0.3

Figure 3. Growth rate (in Ω∗ units), of a polynomial-degree-4 perturbation to an inhomogeneous
(Ω/f = 0.25), elliptical (a/b = 0.5) vortex.
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–0.4
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µ

Ω/f
0.1

0.2

0

m1

c2

c1

c3

Figure 4. Location of initial states for some numerical experiments in the stability diagram for
polynomial degree 3, 4 and 5 perturbations to an inhomogeneous elliptic (aspect ratio a/b = 0.5)
rodon.The experiments refer to figures 5 and 6. Only 0.05-step contours between 0.05 and 2.0 are
shown for Im(ω)/Ω∗.

We calculated eigenvalues for polynomial perturbations, up to degree 5, to inhomog-
eneous elliptical vortices. Figure 1 shows, for instance, the effect of the inhomogeneity
parameter µ. Part (a) is a diagram similar to figure 7 in Ripa (1987); they are not
exactly equivalent because density perturbations have been allowed in our case. These
stability diagrams have been extended to include inhomogeneous rodons.

Figure 2(a) shows, as another example, maxima values reached by the imaginary
part of the eigenvalues associated with a degree-5 polynomial perturbation. They
have been calculated for an a/b = 0.4 rodon. Unstable normal modes appear even
for positive values of the inhomogeneity parameter µ. Therefore, the formal stability
criterion (µ > 0) cannot be extended from circular vortices to elliptical ones. Figures
2(b) and 2(c) show the corresponding contours for polynomial degrees 4 and 3.

Figure 3 demonstrates a further point: we compute the maximum imaginary
component of all the eigenvalues of degree-4 polynomial perturbations to ellip-
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Figure 5. Depth contours for numerical experiments m1 (a) and c2 (b). Initial states for both
simulations are in the ‘neutral stability’ zones of the stability diagram. If these eddies were located
at 30◦ latitude, the spacing between frames would be somewhat less than a week.

tical inhomogeneous vortices (parameters are Ω/f = 0.25, and a/b = 0.5). The
inhomogeneity parameter µ ranges along the horizontal axis from − 1

4
to near 1

2
.

On both sides, at least one eigenvalue bifurcates giving rise to an unstable response.
However, this happens at a finite distance from the line µ = 0. A perturbation analysis
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taking an homogeneous rodon (µ = 0) as base solution would not detect any of these
bifurcations.

4.3. Numerical simulations

The details of the numerical model are given in Ochoa et al. (1998). It is a particle-
in-cell simulation (cf. Pavı́a & Cushman-Roisin 1988) producing the Lagrangian
positions of fluid column particles from an Eulerian velocity field at different time
steps, and from these the Eulerian velocity field is recalculated. From these results,
density distribution and interface layer depth – among many other variables – can be
calculated.

Figure 4 is a stability diagram formed by the superposition of growth rate contour
levels for polynomial perturbations of degrees 3, 4 and 5, calculated for inhomoge-
neous rodons with aspect ratio a/b = 0.5. On it, initial states of several numerical
simulations are located. Their evolutions are observed in the sequences shown in
figures 5 and 6. While in the analytical treatment perturbations can be classified by
polynomial degree and analysed accordingly, no such refinement is possible in the
numerical simulation, i.e. the perturbations are given by the random computational
process. We used 18 019 particles in the simulations, and considered the eddy border
to be the contour line corresponding to 1/1000 th of the maximum interface depth.

The experiments referred to as m1 and c2 are shown in figure 5. These initial states
are close to the ‘neutral stability’ line, while experiments c1 and c3, shown in figure 6,
have their initial states in more unstable zones of the diagram; their change is more
noticeable and much faster. Note also that unstable eddies increase their aspect ratio
and shed mass, particularly noticeable in figure 6.

If calculations were carried out at 30◦ latitude, the time-lapse between frames in
the former simulations would be 6.25 days for m1, and 6.9 days for c2, while frames
in the latter two would be separated by 36.1 hours for c1, and 17.6 hours for c3.

5. Discussion
If the effect of variable density is ignored in equations (3.8a–d), on setting µ = 0

and Dmn = 0 ∀m, n, the stability diagrams become those of Ripa (1987).

5.1. Thermal wind

In order to estimate the validity of a model by means of comparison with a better-
resolution alternative, Ripa (1995) introduced a series of models based on the primitive
equations. The models using vertical averages in velocity, pressure gradients and
density distribution were called L0. The models approximating vertical dependence
by a linear function u(x, σ, t) = ū(x, t) + σuσ(x, t), were called L1. Here σ is a vertical
coordinate mapping the range {z|z ∈ [0, h]} to the interval {σ|σ ∈ [−1, 1]}. That is,

z = h(1− σ)/2, (5.1)

where h is the layer’s depth, and so forth: a model representing vertical dependence
by a n-degree polynomial is called ‘the Ln approximation’.†

Ripa then compared baroclinic instability predictions from models L0 and L1, using
a parallel-flow scheme u = Ux̂, and obtaining critical wavenumbers as functions of

† Or rather ILnPE for ‘Inhomogeneous Layer Primitive Equations (Model)’.
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Figure 6. Depth contours for numerical experiments c1 (a) and c3 (b). Initial states for both
simulations are in the ‘instability’ zones of the stability diagram. If these eddies were located at 30◦
latitude, the spacing between frames would be somewhat less than a day.

U/Uσ , where Uσ = ∂U/∂σ. For the L0 case, Ripa considered Uσ implicitly defined so
as to satisfy the thermal wind equation

Uσ = − h0

2f
θ′0(y). (5.2)
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Figure 7. Growth rate Im (ω)/f for a narrow band (10−3 < µ < 103) in the stability diagram for
inhomogeneous circular rodons. The figure is consistent with the formal analysis stability criterion
(µ > 0) as a necessary, not a suficcient, condition.

IL0PE fails to detect growing perturbations shown by IL1PE for the range U/Uσ < 0.
However, for U/Uσ > 0, IL0PE predictions are very similar to those of IL1PE –
and, even, to those of the two-layer model. For the range U/Uσ > 0, in this sense,
predictions made with IL1PE are valid.

A similar verification specifically for circular vortices is still underway; nevertheless
we can obtain values of U/Uσ from the thermal wind equation. In the remainder of
this section we will again use polar components for u = (u, v). That is,{

u : radial velocity component,

v : azimuthal velocity component.

The thermal wind equation is easily obtained for circular rodons. These are ax-
isymmetric functions, solid-body rotating at angular speed Ω:

φ = φ0(ĥ), u = (0,−Ωr), γ = γ0(ĥ). (5.3)

Upon substitution in equations (1.1), (1.1a) and (1.1c) become trivially satisfied,
while (1.1b) results in

fΩr − Ω2r + γ0φ
′
0 = 0, (5.4)

and the equations of motion are

−v
2

r
− fv +

1

ρ̄

∂p

∂r
= 0,

∂p

∂z
= −ρg. (5.5)

The velocity vertical shear, from (5.5) and (5.1) results in

vσ =
hθ′(r)

4Ω∗ − 2f
, (5.6)

so that
v

vσ
= −Ω∗(4Ω∗ − 2f)r

θ′(r)h
. (5.7)

For the solution (2.9) from Ochoa et al. (1998)

θ′(r) =
2γ0µr

(1 + µ(1− ĥ))2
. (5.8)
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Equation 5.7 becomes

v

vσ
= 4G(Ω/f)

µĥ− µ− 1

µ(ĥ− 1)(µĥ− µ− 2)
, (5.9)

where

G(Ω/f) =
2((1− Ω/f)Ω/f)1/2 − 1

(Ω/f)(2Ω/f − 1)

(
(1− Ω/f)Ω/f

)1/2
.

For the range used in this paper (0 6 Ω/f < 0.5), G(Ω/f) is defined and positive. We
can see from (5.9) that positive values of v/vσ are associated with negative values of
µ, and vice versa.

6. Conclusions
The stability criterion obtained from formal analysis for inhomogeneous circular

rodons (density must increase towards the centre) cannot be extended to elliptical
vortices. We use normal mode analysis to show examples of vortices satisfying the
stability condition and yet they are unstable. Figure 7 is an indication that, even for
circular rodons, the criterion is necessary but not sufficient.

The parameters determining the system stability (rotation speed Ω/f, aspect ratio
a/b and density inhomogeneity µ) have instability zones in the diagram at finite
distances from their axes (see e.g. figure 3). Therefore, a perturbation analysis for
these parameters (as, for instance, in Maas & Zahariev 1996) would fail to show them.

In all numerically analysed cases, the instability implied loss of mass to the sur-
roundings and an increase in aspect ratio, or axisymmetrization, a behaviour reported
by Pavı́a & López (1994) for homogeneous vortices.

Finally we notice that one could divide the instabilities of inhomogeneous elliptical
vortices into two kinds: ‘baroclinic’ and ‘geometrical’. The former, which produces
homogeneization of density, is due to the concealed vertical shear implied in the
horizontal density gradients; and the latter, which produces shedding of mass and
axisymmetrization, is due to the vortex eccentricity and intensity.

The authors would like to express their gratitude to Drs Pedro Ripa, Julio Shein-
baum, Affonso Mascarenhas, Javier Berón Vera, and Héctor Echavarrı́a for comments
and corrections; and to conacyt (grants 4919E and 28794T) and anuies (Mexican
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Pavı́a, E. G. & López, M. 1994 Long-term evolution of elongated warm eddies. J. Phys. Oceanogr.
24, 2201–2208.



Stability of elliptical horizontally inhomogeneous rodons 43

Pinet, R. 1998 Estabilidad de remolinos inhomogéneos elı́pticos. PhD thesis, Facultad de Ciencias
Marinas, Universidad Autónoma de Baja California.

Ripa, P. 1987 On the stability of elliptical vortex solutions of the shallow-water equations. J. Fluid
Mech. 183, 343–363.

Ripa, P. 1992 A tale of three theorems. Revista Mexicana de F́ısica 38, 229–243.

Ripa, P. 1995 On improving a one-layer ocean model with thermodynamics. J. Fluid Mech. 303,
169–201.

Ripa, P. 1996 Linear waves in a one-layer ocean model with thermodynamics. J. Geophys. Res. 101,
1233–1245.

Schopf, P. & Cane, M. 1983 On equatorial dynamics, mixed layer physics and sea surface temper-
ature. J. Phys. Oceanogr. 13, 917–935.


